Multivalent Polymers for Drug Delivery and Imaging: The Challenges of Conjugation
نویسندگان
چکیده
Multivalent polymers offer a powerful opportunity to develop theranostic materials on the size scale of proteins that can provide targeting, imaging, and therapeutic functionality. Achieving this goal requires the presence of multiple targeting molecules, dyes, and/or drugs on the polymer scaffold. This critical review examines the synthetic, analytical, and functional challenges associated with the heterogeneity introduced by conjugation reactions as well as polymer scaffold design. First, approaches to making multivalent polymer conjugations are discussed followed by an analysis of materials that have shown particular promise biologically. Challenges in characterizing the mixed ligand distributions and the impact of these distributions on biological applications are then discussed. Where possible, molecular-level interpretations are provided for the structures that give rise to the functional ligand and molecular weight distributions present in the polymer scaffolds. Lastly, recent strategies employed for overcoming or minimizing the presence of ligand distributions are discussed. This review focuses on multivalent polymer scaffolds where average stoichiometry and/or the distribution of products have been characterized by at least one experimental technique. Key illustrative examples are provided for scaffolds that have been carried forward to in vitro and in vivo testing with significant biological results.
منابع مشابه
Poly (Lactic Acid)Nanofibres as Drug Delivery Systems: Opportunities and Challenges
Numerous Scientists have discovered the procedure of nanotechnology, explicitlynanofibers, asdrug delivery systems for transdermal uses. Nanofibers canbe used to deliver drugs and are capable of controlled release for a continued periodof time. Poly (Lactic Acid) (PLA) is the lastly interesting employed synthetic polymer in biomedical application owing to its well categorized biodegradable prop...
متن کاملBrevinin-2R-linked polyethylenimine as a promising hybrid nano-gene-delivery vector
Objective(s): Polyethylenimine (PEI) is one of the most widely used polymers in gene delivery. The aim of this study was to modify PEI by replacing some of its primary amines with Brevinin 2R (BR-2R) peptide in order to increase the efficiency of gene delivery.Materials and Methods: Polyethylenimine was modified by BR-2R peptide by two d...
متن کاملPreparation and evaluation of electrospun nanofibers containing pectin and time-dependent polymers aimed for colonic drug delivery of celecoxib
Objective(s):The aim of this study was to prepare electrospun nanofibers of celecoxib using combination of time-dependent polymers with pectin to achieve a colon-specific drug delivery system for celecoxib. Materials and Methods:Formulations were produced based on two multilevel 22 full factorial designs. The independent variables were the ratio of drug:time-dependent polymer (X1) and the amoun...
متن کاملTruncated Hepatitis B virus like nanoparticles: A novel drug delivery platform for cancer therapy
Nowadays, Nano-sized drug delivery systems have been studied extensively for theirpotential in cancer therapy. Various drug nanocarriers are being developed including liposomes, micelles, and Virus like nanoparticles (VLNPs). VLNPs offer many advantages for developing smart drug delivery systems due to their precise and repeated structures and relatively large cargo capacities. Truncated ...
متن کاملMatrix Tablets: An Effective Way for Oral Controlled Release Drug Delivery
The purpose of this review article is to characterize all of the parameters regarding the types, polymers used, and release kinetics of matrix tablets. Matrix system was the earliest oral extended release platform for medicinal use. Matrix tablets are most commonly used methods to modulate the release profile of drugs. They are much desirable and preferred for such therapy because they o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 2014